首页> 外文OA文献 >Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations
【2h】

Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations

机译:用于学习有意义的无监督深度神经网络   交涉

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep Learning (DL) aims at learning the \emph{meaningful representations}. Ameaningful representation refers to the one that gives rise to significantperformance improvement of associated Machine Learning (ML) tasks by replacingthe raw data as the input. However, optimal architecture design and modelparameter estimation in DL algorithms are widely considered to be intractable.Evolutionary algorithms are much preferable for complex and non-convex problemsdue to its inherent characteristics of gradient-free and insensitivity to localoptimum. In this paper, we propose a computationally economical algorithm forevolving \emph{unsupervised deep neural networks} to efficiently learn\emph{meaningful representations}, which is very suitable in the current BigData era where sufficient labeled data for training is often expensive toacquire. In the proposed algorithm, finding an appropriate architecture and theinitialized parameter values for a ML task at hand is modeled by onecomputational efficient gene encoding approach, which is employed toeffectively model the task with a large number of parameters. In addition, alocal search strategy is incorporated to facilitate the exploitation search forfurther improving the performance. Furthermore, a small proportion labeled datais utilized during evolution search to guarantee the learnt representations tobe meaningful. The performance of the proposed algorithm has been thoroughlyinvestigated over classification tasks. Specifically, error classification rateon MNIST with $1.15\%$ is reached by the proposed algorithm consistently, whichis a very promising result against state-of-the-art unsupervised DL algorithms.
机译:深度学习(DL)旨在学习\ emph {有意义的表示形式}。有意义的表示是指通过替换原始数据作为输入来显着提高关联的机器学习(ML)任务的性能的表示。然而,人们普遍认为DL算法中的最佳体系结构设计和模型参数估计是棘手的。由于其固有的无梯度特性和对局部最优的不敏感特性,演化算法在复杂和非凸问题上更为可取。在本文中,我们提出了一种计算经济的算法,该算法可以进化\ emph {无监督的深度神经网络}来有效地学习\ emph {有意义的表示},这非常适合当前的BigData时代,在该时代,获取足够的标记数据来进行训练通常很昂贵。在所提出的算法中,通过一种计算有效的基因编码方法,为手头的ML任务找到合适的架构和初始化的参数值,该模型可用于有效地对具有大量参数的任务进行建模。此外,还结合了本地搜索策略,以促进开发搜索,从而进一步提高性能。此外,在进化搜索过程中会使用一小部分标记的数据,以确保学习到的表示有意义。提出的算法的性能已在分类任务上进行了深入研究。特别地,所提出的算法一致地达到了$ 1.15 \%$的MNIST上的错误分类率,相对于最新的无监督DL算法,这是一个非常有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号